Sickle Cell Disease and Other Hemoglobinopathy

Introduction:

1) Hemoglobinopathy is a group of diseases with abnormal structure of the hemoglobin molecule due to the genetic mutation(s) in α or β-globin chain.

2) Sickle-cell disease is the most common hemoglobinopathy due to a single point mutation in the β-globin gene, leading to the production of hemoglobin S, a less soluble protein than its normal counterpart.

Risk Factors:

Hereditary disease, autosomal dominant.

Diagnosis:

- Hb electrophoresis:
 - A, S, C, A2, F
- HbA2 measurement
- Genetic testing for mutations.

Symptoms:

- Hemolytic anemia
- Vaso-occlusive due to less soluble sickled hemoglobin → tissue ischemia or infarction → chronic or acute pain.
 * Sickle cell pain crisis
 * Stroke
 * Acute chest syndrome
 * Kidney infarction
 * Dactylitis or bone infarction → pain
 * Myocardial infarction
 * Priapism – (See 'Priapism' below.)
 * Venous thromboembolism
- Splenic infarction → functional hyposplenism → increased risk of infection.

Biology:

A. In adult, → 3 Hb forms:

- Hb A: α2 β2 (major, adult), 97%
- Hb A2: α2δ2 (minor, adult), 3%
- Hb F: α2γ2 (major, fetal), 0%
- Hb H: β4 0%

B. Human Globin Genes:

1. α-globin gene: on chromosome 16

 ------------α--α--

2. β-globin gene: on chromosome 11

 ------ Gγ--Aγ----δ----β-----

 ------------α--α--

Pathology:

A. Sickle cell disease (Hb SS):

- A single nucleotide mutation (A to T) of the β-globin gene results in glutamic acid (E/Glu) substituted by valine (V/Val) at position 6. Hemoglobin with this mutation is called hemoglobin S (HbS), as opposed to the normal adult HbA.
- Autosomal recessive. Homozygous is symptomatic.

UpToDate:

Hydroxyurea decreases sickle cell crisis, stroke and improves survival.

Sunday, August 13, 2017
B. Sickle cell trait (Hb A/S): silent carrier, asymptomatic.

C. Compound heterozygous: HbS mutation can be co-inherited with a mutation at the other β-globin alleles, resulting in sickle beta thalassemia, hemoglobin SC disease, and others.

Prognosis:
- Incurable, but survival improved over the years.
- Complications, especially pulmonary hypertension → decreased survival (worse prognosis).

Clinical Pathway:

A. Sickle Cell Disease

1) Genetics: AD. Point mutation of β-globin gene (glutamate → valine at codon 6).
 - Sickle cell trait: heterozygous (HbAS)
 * Dx: 60% HbA, 40% HbS; normal HbA2 and HbF
 * Major complications: hyposthenuria, benign hematuria (renal papillary necrosis), ↑ UTI in pregnancy, ↑ splenic infarction at high altitude.

 - Sickle cell disease: homozygous (HbSS)
 * Sx: Anemia (Hb 6-8, ↑ retic, MCV normal, + sickling cells). If low MCV, consider compound thalassemia.
 * Dx: HbS (>90%), HbF, HbA2, no HbA.
 * Major complications: pain crisis, pulmonary HTN (major cause of death).

 - Compound sickle-thalassemia diseases: → all cause sickling symptoms
 * Hb S/β(0)-thalassemia: similar to HbSS, but A2 ↑ more. No HbA
 * Hb S/β(+)-thalassemia: >60% Hb S, 10-30% Hb A (A/S ratio ≈ 15:85). → mild anemia (Hb 9-12), Sx less severe than Hb SS
 * α-thalassemia → ↓ HbS symptoms (hemolysis and cerebrovascular accident)

 - Hb SC Disease: 50% Hb S, 50% Hb C (runs as A2)
 * Sx: less anemic than HbSS, splenomegaly. Less frequent pain, but more frequent ocular and bone complications. Longer life expectancy than Hb SS

2) Major complications:
 - Infection: Parvovirus B19 (aplastic crisis); Straphy, Salmo (osteomyelitis); S. Pneumonia (meningitis); Avascular necrosis (hemoral heads, leg ulcer, etc).

 - Intravascular hemolysis: → hypercoagulable state
 * High rate hemolysis: → stroke, pulmonary HTN, priapism, leg ulcer.
 * Low rate hemolysis: → pain crisis, acute chest syndrome, osteonecrosis.

 - Acute chest syndrome: major cause of death
* Path: fat embolism (88%), in-situ thrombosis, infection. Lipid-laden macrophage on bone marrow biopsy (pathognomonic).
* Dx: new radiographic lung infiltrate (single most important criteria!), plus classic sx (chest pain, fever, hypoxia/dyspnea, acute hemolysis)
* Tx: O2; Abx; RBC transfusion (simple or exchange).
* Prevention: Hydroxyurea, Incentive spirometry.

- Pulmonary hypertension (PTH): → major cause of morbidity and mortality
 * Sx: progressive dyspnea on exertion, high-grade hemolysis (↑ LDH).
 * Dx: Echo (screening). If TRV > 3m/sec, → do right heart cath (confirmation).

- Stroke: hemorrhagic stroke and infarctive stroke.
 * Annual transcranial doppler (TCD) for screening starting at age 2-16 yrs
 * If abnormal TCD, → start chronic transfusions (monthly) → ↓ risk of stroke.
 * For acute stroke: → exchange transfusion → ↓ Hb S to <30% (RBC should be matched for ABO, C,D,E,and Kell antigens).

- Others: sickle cell nephropathy, proliferative retinopathy, splenic infarction, priapism.

3) Diff Dx of Acute Anemia:

4) Treatment: All pts need vaccination and annual eye exam.
- Hydroxyurea: → ↑ Hb F → ↓Hb S sickling, ↓ stroke, ↓ pain crisis, → ↑OS
 * Indicated for > 3 painful episodes/year; history of ACS, severe anemia, or stroke prevention if chronic transfusion is NOT possible.
- Treat iron overload.
- Blood transfusion:
 * SIMPLE transfusion: → acute need to ↑ O2
 * HYPER (chronic): → stroke prevention
 * EXCHANGE: → Acute stroke, acute retinal artery occlusion, priapism → ↓ HbS to <30% and ↑ Hb to 9-10.
 * SIMPLE or EXCHANGE: → Acute chest syndrom (ACS)
- Inappropriate indication for blood transfusion:
 * Chronic anemia, uncomplicated pain episodes, infections, minor surgery not needing general anethesia, aseptic necrosis, uncomplicated pregnancy

5) Peri-op management:
- Keep Hb >10g/dl with SIMPLE transfusion for surgeries requiring general anesthesia
 - For SC disease, → exchange transfusion
 - Hydration, and incentive spirometry
 - Preventative measures for surgery:
* Minor surgery: → Simple RBC transfusion.
* Major surgery: → Exchange transfusion
* Pregnancy: No data to support prophylactic transfusion.

C. Compound Thalassemia-Hemoglobinopathy:
- HbS-β-thalassemia; HbS-α-thalassemia
- Hemoglobin E/β-Thalassemia: SE Asia. Hb E 60-85%, Hb F 15-40%
 * Mild to moderate microcytic hemolytic anemia; Ineffective erythropoiesis; iron overload.

D. Hemoglobin E (β26 glu → lys): this mutation → ↓ β chain production (thalassemic effect)
 - Sx: Hb Trait (A/E): 30% HbE, no anemia, microcytic, target cells
 * Hb E Disease (E/E): 90% HbE, mild anemia, microcytic, target cells (many)
 * Hb E-β-thal (E/β(0)): → significant thalassemia (HbE 40-85%, HbF 10-60%), ↓↓ MCV.
 * Hb SE (S/E) ≈ Hb S-β-thal

E. Hemoglobin C (β6glu → lys): crystal aggregate in RBC → ↓ RBC survival.
 - Sx: Hb C, co-migrates with Hb A2 and Hb F in Hb electrophoresis.
 * Heterozygous (trait): clinic normal, no anemia, some target cells
 * Hb CC (homozygous) , Hb C/β-thal: mild hemolytic anemia, splenomegaly
 * Hb SC: Hb C crystal does not involve in HbS polymerization, → HbSC less severe than Hb SS, but has higher incidence of peripheral retinopathy.

F. Hb D: codon 121 of β globin gene. Major clinical relevance is that compound heterozygote with HbS can cause sickle cell disease.

G. Congenital Heinz body Anemia: AD (rare)
 - Defective heme binding to globin → form unstable Heinz body → early RBC destruction
 - Dx: Hb electrophoresis (normal); Heinz body (crystal violet, isopropanol test).
 - Tx: avoid oxidant agents, folic acid, blood Tx, splenectomy for severe hemolysis.

H. O2 Affinity Variants:
1) High O2 affinity Hb mutant: → erythrocytosis
 - Low P50 (relative tissue hypoxia) → High affinity, left shift O2 dissociation curve (nl 2,3-DPG)
 - Familial erythrocytosis: high affinity genetic mutant, autosomal dominant
 * Dx: ↓ P50 (low) → identify globin gene mutation
 * Tx: erythrocytosis usually mild, phlebotomy NOT necessary
 - Carboxyhemoglobinemia: CO poisoning → O2 bind tightly and do not release (acquired high affinity) → functional hypoxia
 * Sx: rapid progression → loss of consciousness, coma, seizure and death
 * Tx: 100% O2 or hyperbaric oxygen
2) Low O2 affinity Hb mutant: → asymptomatic cyanosis, anemia
 - High P50 → Low affinity, right shift O2 dissociation curve
 - Hemoglobin M (Methemoglobinemia): Low affinity mutants
 * Structural mutation (AD) → "ferrous heme → ferric heme" → unable to bind and transport O2 → cyanosis (NO desaturation). Asymptomatic. Cyanosis NOT improved with Meth Blue, VitC because of structural change.
 * NADH diaphorase deficiency (cytochrome b5 reductase) (AR) → defective enzymatic reduction from Fe(3+) to Fe (2+) → cyanosis, "chocolate brown blood", a/w neurological abnormalities. Cyanosis IMPROVED with Meth Blue, VitC.
 - Clinical: 10-20% (visible cyanosis); >30% (headache, dizziness, dyspnea, tachypnea, tachy); >50% (stupor and obtundation), >70% (lethal)
 - Tx: Mild case → Ascorbic Acid;
 * Severe case (>40%): Methylene Blue, 1mg/kg IV over 5min, q 4-6 hrs. Methylene Blue should be avoided in G6PD deficiency. In that case or in case of nitrate exposure, can use high-flow oxygen or hyperbaric oxygen.

Follow-Up:

1) Sickle Cell Disease:
 - UA, Pulse Ox,
 - Rinal exam by ophthalmologist (annual screening),
 - Ferritin for iron overload,
 - Echo for pulmonary hypertension.

Pharmacology:

A. Deferasirox (Exjade): PO. 20mg/kg, daily. FDA approved for iron overload from transfusion.
 - SE: kidney failure, cytopenia, hepatic abnormality, ocular and auditory disturbance, Yersinia infection (board q), growth delay.

B. Deferoximine (Desferal): IV (prolonged infusion)

C. Hydroxyurea